Figure 4. Involvement of RAG1/2 in the formation of recombination centers. (*A*) Structure of the IgH locus. The murine IgH locus is composed of the 3′ proximal region of 270 kb length consisting of 16 D_H, 4 J_H, and 8 C_H gene segments and of the distal V_H gene cluster extending over a 2.5-Mb region containing 200 V_H genes. (*B*) The recombination center model. In lymphoid progenitors, the proximal J_H gene region of the IgH locus is activated as a recombination center under the control of the μ^0 promoter and E_{μ} enhancer. Binding of the RAG2 PHD finger to the active H3K4me3 modification (green hexagons) in the recombination center recruits the RAG1/2 complex (brown oval), whose binding is further stabilized by the interaction of RAG1 with the J_H RSS element (arrowhead). The tethered RAG1/2 complex captures one of several D_H gene segments followed by D_H-J_H recombination. Blue triangles indicate acetylated lysine residues of histone H3. Epigenetics, Second Edition © 2015 Cold Spring Harbor Laboratory Press